

The extraordinary extinct animals and ecosystems of Madagascar

Steve Goodman

Association Vahatra, Antananarivo et Field Museum, Chicago sgoodman@fieldmuseum.org

General themes

 During the course of the last millennia, a number of notable changes have taken place to the ecosystems of Madagascar.

 Different factors, ranging from natural climate shifts to human interventions, can explain these changes.

Changes in the bird and non-flying mammals since the Quaternary (last 15,000 years)

Group	Number of living species	Number of extinct species	% extinction
Birds (nesting species)	209	20	9.6 %
Terrestrial mammals	195	26	13.3 %

ASSOCIATION VAHATRA GUIDES SUR LA DIVERSITE BIOLOGIQUE DE MADAGASCAR

Les animaux et ecosystemes de l'Holocene disparus de Madagascar

STEVEN M. GOODMAN & WILLIAM L. JUNGERS

ILLUSTRATIONS DE VELIZAR SIMEONOVSKI

Extinct Magagasca

Picturing the Island's Past

Steven M. Goodman and William L. Jungers With plates by Velizar Simeonovski

Some case examples

- Radiocarbon dates for :
 - *†Cryptoprocta spelea 1865 ybp,*
 - †*Mesopropithecus globiceps* 2148 ybp, †*Palaeopropithecus ingens* – 1450-1148, ybp
 - *†Hippopotamus lemereli 980 ybp.*
- Archeology region never populated, even until today.
- Still considerable natural forests.
- CAUSE: natural climatic change (very recent).

1929 White Expedition to Ampoza

1993 Goodman/Yoder Expedition to Ampoza

Population genetics: 1) Little variation in remaining population and went through clear recent bottleneck

Ampoza

- Radiocarbon dates for :
 - *†Hippopotamus lemerlei* from 2760 to 2370 ybp.
 - *†Palaeopropithecus ingens* at 2285 ybp.
 - *†Dipsochelys abrupta* at 2035 ybp.
 - *†Hypogeomys antimena* at 1350 ybp.
- Archeology first human evidence in the region is 13th century.
- **CAUSE** : natural climate change, perhaps accentuated by human activities

Radiocarbon dating

The oldest radiocarbon date published from Madagascar in a human context is from an extinct lemur (*Palaeopropithecus*) with clear knife marks and calibrated to 2325 ybp.

Signs of knife cut-marks

- Amongst the recovered bone remains of lemurs:
 - 1. 40% of the specimens of †*Palaeopropithecus*,
 - 2. 33% of *†Pachylemur*, and
 - 3. 29% of Propithecus.

Ampasambazimba

- Of the 18 species of lemurs known from the site, eight are extinct.
- 40 radiocarbon dates are known from the site, most falling between 7000 to 2000 ybp.

- The earliest archeological evidence of people in the region is 1400 ybp.
- CAUSE: mixture of natural and human modifications.

Antsirabe region

- Four species of extinct lemurs are known from regional subfossil sites.
- 16 species of birds 38% are extinct.
- Radiocarbon dates of giant extinct elephant birds - 4496 ybp.
- Radiocarbon dates of extinct dwarf hippos
 1800-1215 ybp.
- CAUSE: good evidence of climate change to about 3500 ybp, people arrive, and accentuate natural factors.

Conclusions

- 1) Madagascar has experienced considerable climatic changes in the past 15,000 years (natural),
- 2) There is some evidence that the island has exceptionally variable climates (natural),

Conclusions

3) Over the past millennia there have been rather dramatic changes to the ecosystems and land animals of Madagascar.

- In certain areas of the island, these changes are best explained by natural climatic shifts.
- In other areas, human modification of natural habitats resulted in important changes.
- Finally, at other sites a mixture of these factors best explain the ecological changes.

